586 research outputs found

    HIT and brain reward function: a case of mistaken identity (theory)

    Get PDF
    This paper employs a case study from the history of neuroscience—brain reward function—to scrutinize the inductive argument for the so-called ‘Heuristic Identity Theory’ (HIT). The case fails to support HIT, illustrating why other case studies previously thought to provide empirical support for HIT also fold under scrutiny. After distinguishing two different ways of understanding the types of identity claims presupposed by HIT and considering other conceptual problems, we conclude that HIT is not an alternative to the traditional identity theory so much as a relabeling of previously discussed strategies for mechanistic discovery

    Special Section Guest Editorial: Celebrating the Exponential Growth of Optoacoustic/Photoacoustic Imaging

    Get PDF
    Guest editors introduce contributors to the Special Section Celebrating the Exponential Growth of Optoacoustic/Photoacoustic Imaging. We are pleased to introduce the contributions to this JBO Special Section entitled “Celebrating the Exponential Growth of Biomedical Optoacoustic/Photoacoustic Imaging.” This title was chosen to reflect the strong growth of the field over the last two and a half decades. The diversity of papers in this special section bears witness to this, with contributions that encompass numerical modelling, advanced instrumentation, functional imaging, clinical translation, and novel biomedical applications

    Digital Droplet PCR for Influenza Vaccine Development

    Get PDF
    AbstractDevelopment of influenza vaccine processes requires virus quantification to optimize conditions in cell culture or in the associated downstream purification steps. Modern methods include qPCR, which utilizes TaqMan chemistry to detect and quantify viral RNA by comparison of a RNA standard of known concentration. Digital droplet PCR (ddPCR) is similar to qPCR in that it shares the same chemistry for nucleic acid detection. However, in ddPCR, the sample is diluted into partitions (‘droplets’) in order to separate and isolate single molecules. Upon PCR amplification, the droplet's fluorescent intensity depends on the presence or absence of the target; as such, positive and negative droplets are identified, which allows for absolute quantification of the viral genomes. The digital approach has enabled several key advantages. First, a standard is no longer required. Second, efficiency of the reverse transcription and the kinetics of the amplification, principles in qPCR, have no impact on the final digital PCR quantification. For this reason, the extracted RNA does not need to be purified from the reagents needed to lyse the virus. Also, viral associated RNA released by infected cells can be measured directly, further improving the quality of the data generated. Additional improvements to the approach include duplexing with a second assay that measures host cell DNA concentration. The method has been successfully implemented with automation in support of multiple upstream and downstream process development efforts for influenza vaccine manufacturing

    How-to: Undergraduate Research

    Get PDF

    How do pilot and feasibility studies inform randomised placebo-controlled trials in surgery? : A systematic review

    Get PDF
    © Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY. Published by BMJ.Peer reviewedPublisher PD

    Special Section Guest Editorial: Celebrating the Exponential Growth of Optoacoustic/Photoacoustic Imaging

    Get PDF
    Guest editors introduce contributors to the Special Section Celebrating the Exponential Growth of Optoacoustic/Photoacoustic Imaging. We are pleased to introduce the contributions to this JBO Special Section entitled “Celebrating the Exponential Growth of Biomedical Optoacoustic/Photoacoustic Imaging.” This title was chosen to reflect the strong growth of the field over the last two and a half decades. The diversity of papers in this special section bears witness to this, with contributions that encompass numerical modelling, advanced instrumentation, functional imaging, clinical translation, and novel biomedical applications

    State and parameter estimation using Monte Carlo evaluation of path integrals

    Full text link
    Transferring information from observations of a dynamical system to estimate the fixed parameters and unobserved states of a system model can be formulated as the evaluation of a discrete time path integral in model state space. The observations serve as a guiding potential working with the dynamical rules of the model to direct system orbits in state space. The path integral representation permits direct numerical evaluation of the conditional mean path through the state space as well as conditional moments about this mean. Using a Monte Carlo method for selecting paths through state space we show how these moments can be evaluated and demonstrate in an interesting model system the explicit influence of the role of transfer of information from the observations. We address the question of how many observations are required to estimate the unobserved state variables, and we examine the assumptions of Gaussianity of the underlying conditional probability.Comment: Submitted to the Quarterly Journal of the Royal Meteorological Society, 19 pages, 5 figure

    n-Type PbSe Quantum Dots via Post-Synthetic Indium Doping

    Get PDF
    We developed a postsynthetic treatment to produce impurity n-type doped PbSe QDs with In^(3+) as the substitutional dopant. Increasing the incorporated In content is accompanied by a gradual bleaching of the interband first-exciton transition and concurrently the appearance of a size-dependent, intraband absorption, suggesting the controlled introduction of delocalized electrons into the QD band edge states under equilibrium conditions. We compare the optical properties of our In-doped PbSe QDs to cobaltocene treated QDs, where the n-type dopant arises from remote reduction of the PbSe QDs and observe similar behavior. Spectroelectrochemical measurements also demonstrate characteristic n-type signatures, including both an induced absorption within the electrochemical bandgap and a shift of the Fermi-level toward the conduction band. Finally, we demonstrate that the In^(3+) dopants can be reversibly removed from the PbSe QDs, whereupon the first exciton bleach is recovered. Our results demonstrate that PbSe QDs can be controllably n-type doped via impurity aliovalent substitutional doping

    A Generalised Labelled Multi-Bernoulli Filter for Extended Multi-target Tracking

    Get PDF
    Abstract-This paper addresses extended multi-target tracking in clutter, i.e. tracking targets that may produce more than one measurement on each scan. We propose a new algorithm for solving this problem, that is capable of initiating and maintaining labelled estimates of the target kinematics, measurement rates and extents. Our proposed technique is based on modelling the multi-target state as a generalised labelled multi-Bernoulli (GLMB), combined with the gamma Gaussian inverse Wishart (GGIW) distribution for a single extended target. Previously, probability hypothesis density (PHD) and cardinalised PHD (CPHD) filters based on GGIW mixtures have been proposed to solve the extended target tracking problem. Although these are computationally cheaper, they involve significant approximations, as well as lacking the ability to maintain target tracks over time. Here, we compare our proposed GLMB-based approach to the extended target PHD/CPHD filters, and show that the GLMB has improved performance
    corecore